
1

The focus of the course is on programming with a fully shader-based OpenGL. Thus we will
developing applications from scratch emphasizing the differences between the older immediate
mode (pre 3.1) versions of OpenGL and the present versions (3.1-4.3). The code we develop can be
ported easily to OpenGL ES 2.0 and WebGL.

2

3

OpenGL is a library of function calls for doing computer graphics. With it, you can create
interactive applications that render high-quality color images composed of 3D geometric
objects and images.

Additionally, the OpenGL API is window and operating system independent. That means
that the part of your application that draws can be platform independent. However, in order
for OpenGL to be able to render, it needs a window to draw into. Generally, this is
controlled by the windowing system on whatever platform you are working on.

4

While OpenGL has been around for close to 20 years, a lot of changes have occurred in that time.
This course concentrates on the latest versions of OpenGL. In these modern versions of OpenGL
(which we defined as versions starting with version 3.1), OpenGL applications are shader based. In
fact most of this course will discuss shaders and the operations they support.

If you’re familiar with previous versions of OpenGL, or other rasterization-based graphics pipelines
that may have included fixed-function processing, we won’t be covering those techniques since
these functions have been deprecated. Instead, we’ll concentrate on showing how we can
implement those techniques on a modern, shader-based graphics pipeline.

In this modern world of OpenGL, all applications will need to provide shaders, and as such, providing
some perspective on how the pipeline evolved and its phases will be illustrative. We’ll discuss this
next.

5

The initial version of OpenGL was announced in July of 1994. That version of OpenGL implemented
what’s called a fixed-function pipeline, which means that all of the operations that OpenGL supported
were fully-defined, and an application could only modify their operation by changing a set of input
values (like colors or positions). The other point of a fixed-function pipeline is that the order of
operations was always the same – that is, you can’t reorder the sequence operations occur.

This pipeline was the basis of many versions of OpenGL and expanded in many ways, and is still
available for use. However, modern GPUs and their features have diverged from this pipeline, and
support of these previous versions of OpenGL are for supporting current applications. If you’re
developing a new application, we strongly recommend using the techniques that we’ll discuss.
Those techniques can be more flexible, and will likely preform better than using one of these early
versions of OpenGL since they can take advantage of the capabilities of recent Graphics Processing
Units (GPUs).

6

While many features and improvements were added into the fixed-function OpenGL pipeline,
designs of GPUs were exposing more features than could be added into OpenGL. To allow
applications to gain access to these new GPU features, OpenGL version 2.0 officially added
programmable shaders into the graphics pipeline. This version of the pipeline allowed an application
to create small programs, called shaders, that were responsible for implementing the features
required by the application. In the 2.0 version of the pipeline, two programmable stages were made
available:
•  vertex shading enabled the application full control over manipulation of the 3D geometry provided

by the application
•  fragment shading provided the application capabilities for shading pixels (the terms classically

used for determining a pixel’s color).
OpenGL 2.0 also fully supported OpenGL 1.X’s pipeline, allowing the application to use both version
of the pipeline: fixed-function, and programmable.

7

Until OpenGL 3.0, features have only been added (but never removed) from OpenGL, providing a lot
of application backwards compatibility (up to the use of extensions). OpenGL version 3.0 introduced
the mechanisms for removing features from OpenGL, called the deprecation model. It defines how
the OpenGL design committee (the OpenGL Architecture Review Board (ARB) of the Khronos
Group) will advertise of which and how functionality is removed from OpenGL.

You might ask: why remove features from OpenGL? Over the 15 years to OpenGL 3.0, GPU
features and capabilities expanded and some of the methods used in older versions of OpenGL
were not as efficient as modern methods. While removing them could break support for older
applications, it also simplified and optimized the GPUs allowing better performance.

Within an OpenGL application, OpenGL uses an opaque data structure called a context, which
OpenGL uses to store shaders and other data. Contexts come in two flavors:
•  full contexts expose all the features of the current version of OpenGL, including features that are

marked deprecated.
•  forward-compatible contexts enable only the features that will be available in the next version of

OpenGL (i.e., deprecated features pretend to be removed), which can help developers make sure
their applications work with future version of OpenGL.

Forward-compatible contexts are available in OpenGL versions from 3.1 onwards.

8

OpenGL version 3.1 was the first version to remove deprecated features, and break backwards
compatibility with previous versions of OpenGL. The features removed from included the old-style
fixed-function pipeline, among other lesser features.

One major refinement introduced in 3.1 was requiring all data to be placed in GPU-resident buffer
objects, which help reduce the impacts of various computer system architecture limitations related to
GPUs.

While many features were removed from OpenGL 3.1, the OpenGL ARB realized that to make it
easy for application developers to transition their products, they introduced an OpenGL extensions,
GL_ARB_compatibility, that allowed access to the removed features.

9

Until OpenGL 3.2, the number of shader stages in the OpenGL pipeline remained the same, with
only vertex and fragment shaders being supported. OpenGL version 3.2 added a new shader stage
called geometry shading which allows the modification (and generation) of geometry within the
OpenGL pipeline.

10

In order to make it easier for developers to choose the set of features they want to use in their
application, OpenGL 3.2 also introduced profiles which allow further selection of OpenGL contexts.

The core profile is the modern, trimmed-down version of OpenGL that includes the latest features.
You can request a core profile for a Full or Forward-compatible profile. Conversely, you could
request a compatible profile, which includes all functionality (supported by the OpenGL driver on
your system) in all versions of OpenGL up to, and including, the version you’ve requested.

11

The OpenGL 4.X pipeline added another pair of shaders (which work in tandem, so we consider it a
single stage) for supporting dynamic tessellation in the GPU. Tessellation control and tessellation
evaluation shaders were added to OpenGL version 4.0.

The current version of OpenGL is 4.3, which includes some additional features over the 4.0 pipeline,
but no new shading stages.

12

WebGL is becoming increasingly more important now that it is supported by most browsers,
including Mozilla and Chrome. Besides the advantage of being able to run without recompilation
across platforms, it can easily be integrated with other Web applications and make use of a variety of
portable packages available over the Web.

13

14

To begin, let us introduce a simplified model of the OpenGL pipeline. Generally speaking, data flows
from your application through the GPU to generate an image in the frame buffer. Your application
will provide vertices, which are collections of data that are composed to form geometric objects, to
the OpenGL pipeline. The vertex processing stage uses a vertex shader to process each vertex,
doing any computations necessary to determine where in the frame buffer each piece of geometry
should go. The other shading stages we mentioned – tessellation and geometry shading – are also
used for vertex processing, but we’re trying to keep this simple.

After all the vertices for a piece of geometry are processed, the rasterizer determines which pixels in
the frame buffer are affected by the geometry, and for each pixel, the fragment processing stage is
employed, where the fragment shader runs to determine the final color of the pixel.

In your OpenGL applications, you’ll usually need to do the following tasks:
•  specify the vertices for your geometry
•  load vertex and fragment shaders (and other shaders, if you’re using them as well)
•  issue your geometry to engage the OpenGL pipeline for processing
Of course, OpenGL is capable of many other operations as well, many of which are outside of the
scope of this introductory course. We have included references at the end of the notes for your
further research and development.

15

You’ll find that a few techniques for programming with modern OpenGL goes a long way. In fact,
most programs – in terms of OpenGL activity – are very repetitive. Differences usually occur in how
objects are rendered, and that’s mostly handled in your shaders.
There four steps you’ll use for rendering a geometric object are as follows:
1.  First, you’ll load and create OpenGL shader programs from shader source programs you create
2.  Next, you will need to load the data for your objects into OpenGL’s memory. You do this by

creating buffer objects and loading data into them.
3.  Continuing, OpenGL needs to be told how to interpret the data in your buffer objects and

associate that data with variables that you’ll use in your shaders. We call this shader plumbing.
4.  Finally, with your data initialized and shaders set up, you’ll render your objects

We’ll expand on those steps more through the course, but you’ll find that most applications will
merely iterate through those steps.

16

While OpenGL will take care of filling the pixels in your application’s output window or image, it has
no mechanisms for creating that rendering surface. Instead, OpenGL relies on the native windowing
system of your operating system to create a window, and make it available for OpenGL to render
into. For each windowing system (like Microsoft Windows, or the X Window System on Linux [and
other Unixes]), there’s a binding library that lets mediates between OpenGL and the native
windowing system.
Since each windowing system has different semantics for creating windows and binding OpenGL to
them, discussing each one is outside of the scope of this course. Instead, we use an open-source
library named freeglut that abstracts each windowing system’s specifics into a simple library.
freeglut is a derivative of an older implementation called GLUT, and we’ll use those names
interchangeably. GLUT will help us in creating windows, dealing with user input and input devices,
and other window-system activities.

You can find out more about freeglut at its website: http://freeglut.sourceforge.net	

Both	 GLUT	 and	 freeglut	 use	 deprecated	 functions	 and	 should	 not	 work	 with	 a	 core	
profile.	 One	 alternative	 is	 GLFW	 which	 runs	 on	 Windows,	 Linux	 and	 Mac	 OS	 X.	

17

Just like window systems, operating systems have different ways of working with libraries. In some
cases, the library you link your application exposes different functions than the library you execute
your program with. Microsoft Windows is a notable example where you compile your application
with a	 .lib library, but use a .dll at runtime for finding function definitions. As such, your
application would generally need to use operating-system specific methods to access functions. In
general, this is troublesome and a lot of work. Fortunately, another open-source library comes to our
aid, GLEW, the OpenGL Extension Wrangler library. It removes all the complexity of accessing
OpenGL functions, and working with OpenGL extensions. We use GLEW in our examples to simplify
the code. You can find details about GLEW at its website: http://glew.sourceforge.net	

18

In OpenGL, as in other graphics libraries, objects in the scene are composed of geometric primitives,
which themselves are described by vertices. A vertex in modern OpenGL is a collection of data
values associated with a location in space. Those data values might include colors, reflection
information for lighting, or additional coordinates for use in texture mapping. Locations can be
specified on 2, 3 or 4 dimensions but are stored in 4 dimensional homogeneous coordinates.

Vertices must be organized in OpenGL server-side objects called vertex buffer objects (also known
asVBOs), which need to contain all of the vertex information for all of the primitives that you want to
draw at one time. VBOs can store vertex information in almost any format (i.e., an array-of-
structures (AoS) each containing a single vertex’s information, or a structure-of-arrays (SoA) where
all of the same “type” of data for a vertex is stored in a contiguous array, and the structure stores
arrays for each attribute that a vertex can have). The data within a VBO needs to be contiguous in
memory, but doesn’t need to be tightly packed (i.e., data elements may be separated by any number
of bytes, as long as the number of bytes between attributes is consistent).

VBOs are further required to be stored in vertex array objects (known as VAOs). Since it may be the
case that numerous VBOs are associated with a single object, VAOs simplify the management of the
collection of VBOs.

19

20

To form 3D geometric objects, you need to decompose them into geometric primitives that OpenGL
can draw. OpenGL only knows how to draw three things: points, lines, and triangles, but can use
collections of the same type of primitive to optimize rendering.

OpenGL	 Primi,ve	 Descrip,on	 Total	 Ver,ces	 for	 n	 Primi,ves	

GL_POINTS	
Render	 a	 single	 point	 per	 vertex	
(points	 may	 be	 larger	 than	 a	 single	
pixel)	

n	

GL_LINES	
Connect	 each	 pair	 of	 ver:ces	 with	 a	
single	 line	 segment.	

2n	

GL_LINE_STRIP	
Connect	 each	 successive	 vertex	 to	 the	
previous	 one	 with	 a	 line	 segment.	

n+1	

GL_LINE_LOOP	
Connect	 all	 ver:ces	 in	 a	 loop	 of	 line	
segments.	

n	

GL_TRIANGLES	
Render	 a	 triangle	 for	 each	 triple	 of	
ver:ces.	

3n	

GL_TRIANGLE_STRIP	

Render	 a	 triangle	 from	 the	 first	 three	
ver:ces	 in	 the	 list,	 and	 then	 create	 a	
new	 triangle	 with	 the	 last	 two	
rendered	 ver:ces,	 and	 the	 new	 vertex.	

n+2	

GL_TRIANGLE_FAN	
Create	 triangles	 by	 using	 the	 first	
vertex	 in	 the	 list,	 and	 pairs	 of	
successive	 ver:ces.	

n+2	

21

The next few slides will introduce our first example program, one which simply displays a cube with
different colors at each vertex. We aim for simplicity in this example, focusing on the OpenGL
techniques, and not on optimal performance.

22

In order to simplify our application development, we define a few types and constants to make our
code more readable and organized.

Our cube, like any other cube, has six square faces, each of which we’ll draw as two triangles. In
order to sizes memory arrays to hold the necessary vertex data, we define the constant
NumVertices.	

Addi:onally,	 as	 we’ll	 see	 in	 our	 first	 shader,	 the	 OpenGL	 shading	 language,	 GLSL,	 has	 a	 built-‐in	 type	 called	
vec4,	 which	 represents	 a	 vector	 of	 four	 floa:ng-‐point	 values.	 	 We	 define	 a	 C++	 class	 for	 our	 applica:on	 that	
has	 the	 same	 seman:cs	 as	 that	 GLSL	 type.	 	 Addi:onally,	 to	 logically	 associate	 a	 type	 for	 our	 data	 with	 what	
we	 intend	 to	 do	 with	 it,	 we	 leverage	 C++	 	 typedefs	 to	 create	 aliases	 for	 colors	 and	 posi:ons.	

23

In order to provide data for OpenGL to use, we need to stage it so that we can load it into the VBOs
that our application will use. In your applications, you might load these data from a file, or generate
them on the fly. For each vertex, we want to use two bits of data – vertex attributes in OpenGL
speak – to help process each vertex to draw the cube. In our case, each vertex has a position in
space, and an associated color. To store those values for later use in our VBOs, we create two
arrays to hold the per vertex data. Note that we can organize our data in other ways such as with a
single array with interleaved positions and colors.

24

In our example we’ll copy the coordinates of our cube model into a VBO for OpenGL to use. Here
we set up an array of eight coordinates for the corners of a unit cube centered at the origin.

You may be asking yourself: “Why do we have four coordinates for 3D data?” The answer is that in
computer graphics, it’s often useful to include a fourth coordinate to represent three-dimensional
coordinates, as it allows numerous mathematical techniques that are common operations in graphics
to be done in the same way. In fact, this four-dimensional coordinate has a proper name, a
homogenous coordinate. We could also use a point3 type, i.e.

point2(-0.5, -0.5, 0.5)

which will be stored in 4 dimensions on the GPU.

25

Just like our positional data, we’ll set up a matching set of colors for each of the model’s vertices,
which we’ll later copy into our VBO. Here we set up eight RGBA colors. In OpenGL, colors are
processed in the pipeline as floating-point values in the range [0.0, 1.0]. Your input data can take
any for; for example, image data from a digital photograph usually has values between [0, 255].
OpenGL will (if you request it), automatically convert those values into [0.0, 1.0], a process called
normalizing values.

26

As our cube is constructed from square cube faces, we create a small function, quad(), which takes
the indices into the original vertex color and position arrays, and copies the data into the VBO
staging arrays. If you were to use this method (and we’ll see better ways in a moment), you would
need to remember to reset the Index value between setting up your VBO arrays.

27

Here we complete the generation of our cube’s VBO data by specifying the six faces using index
values into our original vertex_positions and vertex_colors arrays. It’s worth noting that the
order that we choose our vertex indices is important, as it will affect something called backface
culling later.

We’ll see later that instead of creating the cube by copying lots of data, we can use our original
vertex data along with just the indices we passed into quad() here to accomplish the same effect.
That technique is very common, and something you’ll use a lot. We chose this to introduce the
technique in this manner to simplify the OpenGL concepts for loading VBO data.

28

Similarly to VBOs, vertex array objects (VAOs) encapsulate all of the VBO data for an object. This
allows much easier switching of data when rendering multiple objects (provided the data’s been set
up in multiple VAOs).

The process for initializing a VAO is similar to that of a VBO, except a little less involved.
1.  First, generate a name VAO name by calling glGenVertexArrays()	
2.  Next,	 make	 the	 VAO	 “current”	 by	 calling	 glBindVertexArray().	 	 Similar	 to	 what	 was	 described	 for	

VBOs,	 you’ll	 call	 this	 every	 :me	 you	 want	 to	 use	 or	 update	 the	 VBOs	 contained	 within	 this	 VAO.	

29

The above sequence calls shows how to create and bind a VAO. Since all geometric data in
OpenGL must be stored in VAOs, you’ll use this code idiom often.

30

While we’ve talked a lot about VBOs, we haven’t detailed how one goes about creating them. Vertex
buffer objects, like all (memory) objects in OpenGL (as compared to geometric objects) are created
in the same way, using the same set of functions. In fact, you’ll see that the pattern of calls we make
here are similar to other sequences of calls for doing other OpenGL operations.
In the case of vertex buffer objects, you’ll do the following sequence of function calls:
1.  Generate a buffer’s name by calling glGenBuffers()	
2.  Next, you’ll make that buffer the “current” buffer, which means it’s the selected buffer for reading

or writing data values by calling glBindBuffer(),	 with	 a	 type	 of	 GL_ARRAY_BUFFER.	 	 There	 are	
different	 types	 of	 buffer	 objects,	 with	 an	 array	 buffer	 being	 the	 one	 used	 for	 storing	 geometric	 data.	

3.  To initialize a buffer, you’ll call glBufferData(), which will copy data from your application into
the GPU’s memory. You would do the same operation if you also wanted to update data in the
buffer

4.  Finally, when it comes time to render using the data in the buffer, you’ll once again call
glBindVertexArray() to make it and its VBOs current again. In fact, if you have multiple
objects, each with their own VAO, you’ll likely call glBindVertexArray() once per frame for
each object.

31

The above sequence of calls illustrates generating, binding, and initializing a VBO with data. In this
example, we use a technique permitting data to be loaded into two steps, which we need as our data
values are in two separate arrays. It’s noteworthy to look at the glBufferData() call; in this call, we
basically have OpenGL allocate an array sized to our needs (the combined size of our point and
color arrays), but don’t transfer any data with the call, which is specified with the NULL value. This is
akin to calling malloc()	 to create a buffer of uninitialized data. We later load that array with our
calls to glBufferSubData(), which allows us to replace a subsection of our array. This technique is
also useful if you need to update data inside of a VBO at some point in the execution of your
application.

32

33

The final step in preparing you data for processing by OpenGL (i.e., sending it down for rendering) is
to specify which vertex attributes you’d like issued to the graphics pipeline. While this might seem
superfluous, it allows you to specify multiple collections of data, and choose which ones you’d like to
use at any given time.
Each of the attributes that we enable must be associated with an “in” variable of the currently bound
vertex shader. You retrieve vertex attribute locations was retrieved from the compiled shader by
calling glGetAttribLocation().	 	 We discuss this call in the shader section.

To complete the “plumbing” of associating our vertex data with variables in our shader programs, you
need to tell OpenGL where in our buffer object to find the vertex data, and which shader variable to
pass the data to when we draw. The above code snippet shows that process for our two data
sources. In our shaders (which we’ll discuss in a moment), we have two variables: vPosition, and
vColor, which we will associate with the data values in our VBOs that we copied form our
vertex_positions and vertex_colors arrays.

The calls to glGetAttribLocation() will return a compiler-generated index which we need to use
to complete the connection from our data to the shader inputs. We also need to “turn the valve” on
our data by enabling its attribute array by calling glEnableVertexAttribArray() with the selected
attribute location.
This is the most flexible approach to this process, but depending on your OpenGL version, you may
be able to use the layout construct, which allows you to specify the attribute location, as compared
to having to retrieve it after compiling and linking your shaders. We’ll discuss that in our shader
section later in the course.

BUFFER_OFFSET is a simple macro defined to make the code more readable

#define BUFFER_OFFSET(offset) ((GLvoid*) (offset))

34

35

In order to initiate the rendering of primitives, you need to issue a drawing routine. While there are
many routines for this in OpenGL, we’ll discuss the most fundamental ones. The simplest routine is
glDrawArrays(), to which you specify what type of graphics primitive you want to draw (e.g., here
we’re rending a triangle strip), which vertex in the enabled vertex attribute arrays to start with, and
how many vertices to send.

This is the simplest way of rendering geometry in OpenGL Version 3.1. You merely need to store
you vertex data in sequence, and then glDrawArrays() takes care of the rest. However, in some
cases, this won’t be the most memory efficient method of doing things. Many geometric objects
share vertices between geometric primitives, and with this method, you need to replicate the data
once for each vertex. We’ll see a more flexible, in terms of memory storage and access in the next
slides.

36

37

As with any programming language, GLSL has types for variables. However, it includes vector-, and
matrix-based types to simplify the operations that occur often in computer graphics.

In addition to numerical types, other types like texture samplers are used to enable other OpenGL
operations. We’ll discuss texture samplers in the texture mapping section.

The vector and matrix classes of GLSL are first-class types, with arithmetic and logical operations
well defined. This helps simplify your code, and prevent errors.

Note in the above example, overloading ensures that both a*m and m*a are defined although they
will not in general produce the same result.

38

For GLSL’s vector types, you’ll find that often you may also want to access components within the
vector, as well as operate on all of the vector’s components at the same time. To support that,
vectors and matrices (which are really a vector of vectors), support normal “C” vector accessing
using the square-bracket notation (e.g., “[i]”), with zero-based indexing. Additionally, vectors (but not
matrices) support swizzling, which provides a very powerful method for accessing and manipulating
vector components.
Swizzles allow components within a vector to be accessed by name. For example, the first element
in a vector – element 0 – can also be referenced by the names “x”, “s”, and “r”. Why all the names –
to clarify their usage. If you’re working with a color, for example, it may be clearer in the code to use
“r” to represent the red channel, as compared to “x”, which make more sense as the x-positional
coordinate

39

In addition to types, GLSL has numerous qualifiers to describe a variable usage. The most common
of those are:
•  in qualifiers that indicate the shader variable will receive data flowing into the shader, either from

the application, or the previous shader stage.
•  out qualifier which tag a variable as data output where data will flow to the next shader stage, or

to the framebuffer
•  uniform qualifiers for accessing data that doesn’t change across a draw operation

40

Like the “C” language, GLSL supports all of the logical flow control statements you’re used to.

41

GLSL also provides a rich library of functions supporting common operations. While pretty much
every vector- and matrix-related function available you can think of, along with the most common
mathematical functions are built into GLSL, there’s no support for operations like reading files or
printing values. Shaders are really data-flow engines with data coming in, being processed, and
sent on for further processing.

42

Fundamental to shader processing are a couple of built-in GLSL variable which are the terminus for
operations. In particular, vertex data, which can be processed by up to for shader stages in
OpenGL are all ended by setting a positional value into the built-in variable, gl_Position. Similarly,
the output of a fragment shader (in version 3.1 of OpenGL) is set by writing values into the built-in
variable gl_FragColor. Later versions of OpenGL allow fragment shaders to output to other
variables of the user’s designation as well.

43

44

Here’s the simple vertex shader we use in our cube rendering example. It accepts two vertex
attributes as input: the vertex’s position and color, and does very little processing on them; in fact, it
merely copies the input into some output variables (with gl_Position being implicitly declared).
The results of each vertex shader execution are passed further down the OpenGL pipeline, and
ultimately end their processing in the fragment shader.

45

Here’s the associated fragment shader that we use in our cube example. While this shader is as
simple as they come – merely setting the fragment’s color to the input color passed in, there’s been a
lot of processing to this point. In particular, every fragment that’s shaded was generated by the
rasterizer, which is a built-in, non-programmable (i.e., you don’t write a shader to control its
operation). What’s magical about this process is that if the colors across the geometric primitive (for
multi-vertex primitives: lines and triangles) is not the same, the rasterizer will interpolate those colors
across the primitive, passing each iterated value into our color variable.

Shaders need to be compiled in order to be used in your program. As compared to C programs, the
compiler and linker are implemented in the OpenGL driver, and accessible through function calls
from within your program. The diagram illustrates the steps required to compile and link each type of
shader into your shader program. A program can contain either a vertex shader (which replaces the
fixed-function vertex processing), a fragment shader (which replaces the fragment coloring stages),
or both. If a shader isn’t present for a particular stage, the fixed-function part of the pipeline is used
in its place.

Just a with regular programs, a syntax error from the compilation stage, or a missing symbol from
the linker stage could prevent the successful generation of an executable program. There are
routines for verifying the results of the compilation and link stages of the compilation process, but are
not shown here. Instead, we’ve provided a routine that makes this process much simpler, as
demonstrated on the next slide.

46

To simplify our lives, we created a routine that simplifies loading, compiling, and linking shaders:
InitShaders(). It implements the shader compilation and linking process shown on the previous
slide. It also does full error checking, and will terminate your program if there’s an error at some
stage in the process (production applications might choose a less terminal solution to the problem,
but it’s useful in the classroom).

InitShaders() accepts two parameters, each a filename to be loaded as source for the vertex and
fragment shader stages, respectively.
The value returned from InitShaders() will be a valid GLSL program id that you can pass into
glUseProgram().

47

48

OpenGL shaders, depending on which stage their associated with, process different types of data.
Some data for a shader changes for each shader invocation. For example, each time a vertex
shader executes, it’s presented with new data for a single vertex; likewise for fragment, and the other
shader stages in the pipeline. The number of executions of a particular shader rely on how much
data was associated with the draw call that started the pipeline – if you call glDrawArrays()
specifiying 100 vertices, your vertex shader will be called 100 times, each time with a different
vertex.

Other data that a shader may use in processing may be constant across a draw call, or even all the
drawing calls for a frame. GLSL calls those uniform varialbes, since their value is uniform across the
execution of all shaders for a single draw call.

Each of the shader’s input data variables (ins and uniforms) needs to be connected to a data source
in the application. We’ve already seen glGetAttribLocation() for retrieving information for connecting
vertex data in a VBO to shader variable. You will also use the same process for uniform variables,
as we’ll describe shortly.

49

Once you know the names of variables in a shader – whether they’re attributes or uniforms – you
can determine their location using one of the glGet*Location() calls.
If you don’t know the variables in a shader (if, for instance, you’re writing a library that accepts
shaders), you can find out all of the shader variables by using the glGetActiveAttrib() function.

50

You’ve already seen how one associates values with attributes by calling glVertexAttribPointer(). To
specify a uniform’s value, we use one of the glUniform*() functions. For setting a vector type, you’ll
use one of the glUniform*() variants, and for matrices you’ll use a glUniformMatrix *() form.

You’ll find that many OpenGL programs look very similar, particularly simple examples as we’re
showing in class. Above we demonstrate the basic initialization code for our examples. In our
main() routine, you can see our use of the freeglut and GLEW libraries.

The main() has a number of tasks:
•  Initialize and open a window
• Initialize the buffers and parameters by calling init()
• Specify the callback functions for events
• Enter an infinite event loop

Although callbacks aren’t required by OpenGL, it is the standard method for developing interactive
applications.

51

A display callback is required by freeglut. It is invoked whenever OpenGL determines a window has
to be redrawn, i.e. when a window is first opened or the contents of a window are changed. In our
example we use a keyboard callback to end the program.

52

We begin delving into shader specifics by first taking a look at vertex shaders. As you’ve probably
arrived at, vertex shaders are used to process vertices, and have the required responsibility of
specifying the vertex’s position in clip coordinates. This process usually involves numerous vertex
transformations, which we’ll discuss next. Additionally, a vertex shader may be responsible for
determine additional information about a vertex for use by the rasterizer, including specifying colors.
To begin our discussion of vertex transformations, we’ll first describe the synthetic camera model.

53

54

55

This model has become know as the synthetic camera model.
Note that both the objects to be viewed and the camera are three-dimensional while the
resulting image is two dimensional.

56

The processing required for converting a vertex from 3D or 4D space into a 2D window coordinate is
done by the transform stage of the graphics pipeline. The operations in that stage are illustrated
above. The purple boxes represent a matrix multiplication operation. In graphics, all of our matrices
are 4×4 matrices (they’re homogenous, hence the reason for homogenous coordinates).

When we want to draw an geometric object, like a chair for instance, we first determine all of the
vertices that we want to associate with the chair. Next, we determine how those vertices should be
grouped to form geometric primitives, and the order we’re going to send them to the graphics
subsystem. This process is called modeling. Quite often, we’ll model an object in its own little 3D
coordinate system. When we want to add that object into the scene we’re developing, we need to
determine its world coordinates. We do this by specifying a modeling transformation, which tells the
system how to move from one coordinate system to another.

Modeling transformations, in combination with viewing transforms, which dictate where the viewing
frustum is in world coordinates, are the first transformation that a vertex goes through. Next, the
projection transform is applied which maps the vertex into another space called clip coordinates,
which is where clipping occurs. After clipping, we divide by the w value of the vertex, which is
modified by projection. This division operation is what allows the farther-objects-being-smaller
activity. The transformed, clipped coordinates are then mapped into the window.

57

Note that human vision and a camera lens have cone-shaped viewing volumes. OpenGL
(and almost all computer graphics APIs) describe a pyramid-shaped viewing volume.
Therefore, the computer will “see” differently from the natural viewpoints, especially along
the edges of viewing volumes. This is particularly pronounced for wide-angle “fish-eye”
camera lenses.

58

By using 4×4 matrices, OpenGL can represent all geometric transformations using one
matrix format. Perspective projections and translations require the 4th row and column.
Otherwise, these operations would require an vector-addition operation, in addition to the
matrix multiplication.

While OpenGL specifies matrices in column-major order, this is often confusing for “C”
programmers who are used to row-major ordering for two-dimensional arrays. OpenGL
provides routines for loading both column- and row-major matrices. However, for standard
OpenGL transformations, there are functions that automatically generate the matrices for
you, so you don’t generally need to be concerned about this until you start doing more
advanced operations.
For operations other than perspective projection, the fourth row is always (0, 0, 0, 1) which
leaves the w-coordinate unchanged..

59

Another essential part of the graphics processing is setting up how much of the world we can see.
We construct a viewing frustum, which defines the chunk of 3-space that we can see. There are two
types of views: a perspective view, which you’re familiar with as it’s how your eye works, is used to
generate frames that match your view of reality–things farther from your appear smaller. This is the
type of view used for video games, simulations, and most graphics applications in general.
The other view, orthographic, is used principally for engineering and design situations, where relative
lengths and angles need to be preserved.
For a perspective, we locate the eye at the apex of the frustum pyramid. We can see any objects
which are between the two planes perpendicular to eye (they’re called the near and far clipping
planes, respectively). Any vertices between near and far, and inside the four planes that connect
them will be rendered. Otherwise, those vertices are clipped out and discarded. In some cases a
primitive will be entirely outside of the view, and the system will discard it for that frame. Other
primitives might intersect the frustum, which we clip such that the part of them that’s outside is
discarded and we create new vertices for the modified primitive.
While the system can easily determine which primitive are inside the frustum, it’s wasteful of system
bandwidth to have lots of primitives discarded in this manner. We utilize a technique named culling
to determine exactly which primitives need to be sent to the graphics processor, and send only those
primitives to maximize its efficiency.

60

In OpenGL, the default viewing frusta are always configured in the same manner, which defines the
orientation of our clip coordinates. Specifically, clip coordinates are defined with the “eye” located at
the origin, looking down the –z axis. From there, we define two distances: our near and far clip
distances, which specify the location of our near and far clipping planes. The viewing volume is then
completely by specifying the positions of the enclosing planes that are parallel to the view direction .

61

LookAt() generates a viewing matrix based on several points. LookAt() provides
natrual semantics for modeling flight application, but care must be taken to avoid
degenerate numerical situations, where the generated viewing matrix is undefined.
An alternative is to specify a sequence of rotations and translations that are concatenated
with an initial identity matrix.
Note: that the name modelview matrix is appropriate since moving objects in the model front
of the camera is equivalent to moving the camera to view a set of objects.

62

Here we show the construction of a translation matrix. Translations really move coordinate systems,
and not individual objects.

63

Here we show the construction of a scale matrix, which is used to change the shape of space, but
not move it (or more precisely, the origin). The above illustration has a translation to show how
space was modified, but a simple scale matrix will not include such a translation.

64

Here we show the effects of a rotation matrix on space. Once again, a translation has been applied
in the image to make it easier to see the rotation’s affect.

Here’s an example vertex shader for rotating our cube. We generate the matrices in the shader (as
compared to in the application), based on the input angle theta. It’s useful to note that we can
vectorize numerous computations. For example, we can generate a vectors of sines and cosines for
the input angle, which we’ll use in further computations.

65

Completing our shader, we compose two of three rotation matrices (one around each axis). In
generating our matrices, we use one of the many matrix constructor functions (in this case,
specifying the 16 individual elements). It’s important to note in this case, that our matrices are
column-major, so we need to take care in the placement of the values in the constructor.

66

We complete our shader here by generating the last rotation matrix, and) and then use the
composition of those matrices to transform the input vertex position. We also pass-thru the color
values by assigning the input color to an output variable.

67

Finally, we merely need to supply the angle values into our shader through our uniform plumbing. In
this case, we track each of the axes rotation angle, and store them in a vec3 that matches the angle
declaration in the shader. We also keep track of the uniform’s location so we can easily update its
value.

68

69

Lighting is an important technique in computer graphics. Without lighting, objects tend to
look like they are made out of plastic.
OpenGL divides lighting into three parts: material properties, light properties and global
lighting parameters.
Lighting is available in both RGBA mode and color index mode. RGBA is more flexible and
less restrictive than color index mode lighting.

OpenGL can use the shade at one vertex to shade an entire polygon (constant shading) or
interpolate the shades at the vertices across the polygon (smooth shading), the default.

The original lighting model that was supported in hardware and OpenGL was due to Phong and later
modified by Blinn. Although the lighting functions have been deprecated, the model can easily be
implemented in shaders and forms the basis for other models.

The orientation of a surface is specified by the normal at each point. For a flat polygon the normal is
constant over the polygon. Because normals are specified by the application program and can be
changed between the specification of vertices, when we shade a polygon it can appear to be curved.

OpenGL lighting is based on the Phong lighting model. At each vertex in the primitive, a
color is computed using that primitives material properties along with the light settings.
The color for the vertex is computed by adding four computed colors for the final vertex
color. The four contributors to the vertex color are:

•  Ambient is color of the object from all the undirected light in a scene.
•  Diffuse is the base color of the object under current lighting. There must be a light
shining on the object to get a diffuse contribution.
•  Specular is the contribution of the shiny highlights on the object.
•  Emission is the contribution added in if the object emits light (i.e., glows)

The lighting normal tells OpenGL how the object reflects light around a vertex. If you
imagine that there is a small mirror at the vertex, the lighting normal describes how the
mirror is oriented, and consequently how light is reflected.

Material properties describe the color and surface properties of a material (dull, shiny, etc).
The properties described above are components of the Phong lighting model, a simple
model that yields reasonable results with little computation. Each of the material
components would be passed into a vertex shader, for example, to be used in the lighting
computation along with the vertex’s position and lighting normal.

Here we declare numerous variables that we’ll use in computing a color using a simple lighting
model. All of the uniform values are passed in from the application and describe the material and
light properties being rendered.

76

In the initial parts of our shader, we generate numerous vector quantities to be used in our lighting
computation.
•  pos represents the vertex’s position in eye coordinates
•  L represents the vector from the vertex to the light
•  E represents the “eye” vector, which is the vector from the vertex’s eye-space position to the origin
•  H is the “half vector” which is the normalized vector half-way between the light and eye vectors
•  N is the transformed vertex normal
Note that all of these quantities are vec3’s, since we’re dealing with vectors, as compared to
homogenous coordinates. When we need to convert form a homogenous coordinate to a vector, we
use a vector swizzle to extract the components we need.

77

Here we complete our lighting computation. The Phong model, which this shader is based on, uses
various material properties as we described before. Likewise, each light can contribute to those
same properties. The combination of the material and light properties are represented as our
“product” variables in this shader. The products are merely the component-wise products of the light
and objects same material propreties. These values are computed in the application and passed
into the shader.
In the Phong model, each material product is attenuated by the magnitude of the various vector
products. Starting with the most influential component of lighting, the diffuse color, we use the dot
product of the lighting normal and light vector, clamping the value if the dot product is negative
(which physically means the light’s behind the object). We continue by computing the specular
component, which is computed as the dot product of the normal and the half-vector raised to the
shininess value. Finally, if the light is behind the object, we correct the specular contribution.
Finally, we compose the final vertex color as the sum of the computed ambient, diffuse, and specular
colors, and update the transformed vertex position.

78

79

The final shading stage that OpenGL supports is fragment shading which allows an application per-
pixel-location control over the color that may be written to that location. Fragments, which are on
their way to the framebuffer, but still need to do some pass some additional processing to become
pixels. However, the computational power available in shading fragments is a great asset to
generating images. In a fragment shader, you can compute lighting values – similar to what we just
discussed in vertex shading – per fragment, which gives much better results, or add bump mapping,
which provides the illusion of greater surface detail. Likewise, we’ll apply texture maps, which allow
us to increase the detail for our models without increasing the geometric complexity.

80

As an example of what we can do in a fragment shader, consider using our lighting model, but for
every pixel, as compared to at the vertex level. Doing fragment lighting provides much better visual
result, but using almost identical shader code (except you need to move it from your vertex shader
into your fragment shader). The only trick required is that we need to have the rasterizer provide us
updated normal values for each fragment. However, that’s just like iterating a color, so there’s
almost nothing to it.

81

82 82

We’ll now analyze a few case studies from different applications.

83

The first simple application we’ll look at is rendering height fields, as you might do when rendering
terrain in an outdoor game or flight simulator.

84

We’d first like to render a wire-frame version of our mesh, which we’ll draw a individual line loops.
To begin, we build our data set by sampling the function f for a particular time across the domain of
points. From there, we build our array of points to render. Once we have our data and have loaded
into our VBOs we render it by drawing the individual wireframe quadrilaterals.
There are many ways to render a wireframe surface like this – give some thought of other methods.

85

86

Here’s a rendering of the mesh we just generated.

87

While the wireframe version is of some interest, we can create better looking meshes by adding a
few more effects. We’ll begin by creating a solid mesh by converting each wireframe quadrilateral
into a solid quad composed of two separate triangles. Turns out with our pervious set of points, we
can merely changed our glDrawArrays()	 call – or more specifically, the geometric primitive type –
to render a solid surface.
However, if we don’t do some additional modification of one of our shaders, we’ll get a large back
blob. To produce a more useful rendering, we’ll add lighting computations into our vertex shader,
computing a lighting color for each vertex, which will be passed to the fragment shader.

87

88

Details of lighting model are not important to here. The model includes the standard modified Phong
diffuse and specular terms without distance.
Note that we do the lighting in eye coordinates and therefore must compute the eye position in this
frame.
All the light and material properties are set in the application and are available through the OpenGL
state.

88

89 89

90

Here’s a rendering of our shaded, solid mesh.

91

Textures are images that can be thought of as continuous and be one, two, three, or four
dimensional. By convention, the coordinates of the image are s, t, r and q. Thus for the two
dimensional image above, a point in the image is given by its (s, t) values with (0, 0) in the
lower-left corner and (1, 1) in the top-right corner.
A texture map for a two-dimensional geometric object in (x, y, z) world coordinates maps a
point in (s, t) space to a corresponding point on the screen.

The advantage of texture mapping is that visual detail is in the image, not in the geometry.
Thus, the complexity of an image does not affect the geometric pipeline (transformations,
clipping) in OpenGL. Texture is added during rasterization where the geometric and pixel
pipelines meet.

In the simplest approach, we must perform these three steps.
Textures reside in texture memory. When we assign an image to a texture it is copied from
processor memory to texture memory where pixels are formatted differently.
Texture coordinates are actually part of the state as are other vertex attributes such as color
and normals. As with colors, OpenGL interpolates texture inside geometric objects.
Because textures are really discrete and of limited extent, texture mapping is subject to
aliasing errors that can be controlled through filtering.
Texture memory is a limited resource and having only a single active texture can lead to
inefficient code.

The general steps to enable texturing are listed above. Some steps are optional, and due to
the number of combinations, complete coverage of the topic is outside the scope of this
course.

Here we use the texture object approach. Using texture objects may enable your OpenGL
implementation to make some optimizations behind the scenes.

As with any other OpenGL state, texture mapping requires that glEnable() be called.
The tokens for texturing are:

 GL_TEXTURE_1D - one dimensional texturing
 GL_TEXTURE_2D - two dimensional texturing
 GL_TEXTURE_3D - three dimensional texturing

2D texturing is the most commonly used. 1D texturing is useful for applying contours to
objects (like altitude contours to mountains). 3D texturing is useful for volume rendering.

The first step in creating texture objects is to have OpenGL reserve some indices for your
objects. glGenTextures() will request n texture ids and return those values back to you
in texIds.
To begin defining a texture object, you call glBindTexture() with the id of the object you
want to create. The target is one of GL_TEXTURE_{123}D(). All texturing calls become
part of the object until the next glBindTexture() is called.
To have OpenGL use a particular texture object, call glBindTexture() with the target and
id of the object you want to be active.
To delete texture objects, use glDeleteTextures(n, *texIds), where texIds is
an array of texture object identifiers to be deleted.

After creating a texture object, you’ll need to bind to it to initialize or use the texture stored in
the object. This operation is very similar to what you’ve seen when working with VAOs and
VBOs.

Specifying the texels for a texture is done using the glTexImage{123}D() call. This will
transfer the texels in CPU memory to OpenGL, where they will be processed and converted
into an internal format.
The level parameter is used for defining how OpenGL should use this image when mapping
texels to pixels. Generally, you’ll set the level to 0, unless you are using a texturing
technique called mipmapping, which we will discuss in the next section.

When you want to map a texture onto a geometric primitive, you need to provide texture
coordinates. Valid texture coordinates are between 0 and 1, for each texture dimension,
and usually manifest in shaders as vertex attributes. We’ll see how to deal with texture
coordinates outside the range [0, 1] in a moment.

Just like vertex attributes were associated with data in the application, so too with textures. In
particular, you access a texture defined in your application using a texture sampler in your shader.
The type of the sampler needs to match the type of the associated texture. For example, you would
use a sampler2D to work with a two-dimensional texture created with
glTexImage2D(GL_TEXTURE_2D, …);

Within the shader, you use the texture() function to retrieve data values from the texture associated
with your sampler. To the texture() function, you pass the sampler as well as the texture coordinates
where you want to pull the data from.

Note: the overloaded texture() method was added into GLSL version 3.30. Prior to that release,
there were special texture functions for each type of texture sampler (e.g., there was a texture2D()
call for use with the sampler2D).

100

Similar to our first cube example, if we want to texture our cube, we need to provide texture
coordinates for use in our shaders. Following our previous example, we merely add an additional
vertex attribute that contains our texture coordinates. We do this for each of our vertices. We will
also need to update VBOs and shaders to take this new attribute into account.

101

The code snippet above demonstrates procedurally generating a two 64 × 64 texture maps.

102

The above OpenGL commands completely specify a texture object. The code creates a texture id by
calling glGenTextures(). It then binds the texture using glBindTexture() to open the object for use,
and loading in the texture by calling glTexImage2D(). After that, numerous sampler characteristics
are set, including the texture wrap modes, and texel filtering.

103

In order to apply textures to our geometry, we need to modify both the vertex shader and the pixel
shader. Above, we add some simple logic to pass-thru the texture coordinates from an attribute into
data for the rasterizer.

104

Continuing to update our shaders, we add some simple code to modify our fragment shader to
include sampling a texture. How the texture is sampled (e.g., coordinate wrap modes, texel filtering,
etc.) is configured in the application using the glTexParameter*() call.

105

106

All the above books except Angel and Shreiner, Interactive Computer Graphics (Addison-Wesley),
are in the Addison-Wesley Professional series of OpenGL books. Books on WebGL are just starting
to appear.

107

108

Many example programs, a C++ matrix-vector package and the InitShader function are under the
Book Support tab at www.cs.unm.edu/~angel

109

