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The focus of the course is on programming with a fully shader-based OpenGL. Thus we will 
developing applications from scratch emphasizing the differences between the older immediate 
mode (pre 3.1) versions of OpenGL and the present versions (3.1-4.3). The code we develop can be 
ported easily to OpenGL ES 2.0 and WebGL. 

2 



3 

OpenGL is a library of function calls for doing computer graphics. With it, you can create 
interactive applications that render high-quality color images composed of 3D geometric 
objects and images. 

Additionally, the OpenGL API is window and operating system independent. That means 
that the part of your application that draws can be platform independent. However, in order 
for OpenGL to be able to render, it needs a window to draw into. Generally,  this is 
controlled by the windowing system on whatever platform you are working on. 
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While OpenGL has been around for close to 20 years, a lot of changes have occurred in that time.  
This course concentrates on the latest versions of OpenGL.  In these modern versions of OpenGL 
(which we defined as versions starting with version 3.1), OpenGL applications are shader based.  In 
fact most of this course will discuss shaders and the operations they support. 

If you’re familiar with previous versions of OpenGL, or other rasterization-based graphics pipelines 
that may have included fixed-function processing, we won’t be covering those techniques since 
these functions have been deprecated.  Instead, we’ll concentrate on showing how we can 
implement those techniques on a modern, shader-based graphics pipeline. 

In this modern world of OpenGL, all applications will need to provide shaders, and as such, providing 
some perspective on how the pipeline evolved and its phases will be illustrative.  We’ll discuss this 
next. 
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The initial version of OpenGL was announced in July of 1994.  That version of OpenGL implemented 
what’s called a fixed-function pipeline, which means that all of the operations that OpenGL supported 
were fully-defined, and an application could only modify their operation by changing a set of input 
values (like colors or positions).  The other point of a fixed-function pipeline is that the order of 
operations was always the same – that is, you can’t reorder the sequence operations occur. 

This pipeline was the basis of many versions of OpenGL and expanded in many ways, and is still 
available for use.  However, modern GPUs and their features have diverged from this pipeline, and 
support of these previous versions of OpenGL are for supporting current applications.  If you’re 
developing a new application, we strongly recommend using the techniques that we’ll discuss.  
Those techniques can be more flexible, and will likely preform better than using one of these early 
versions of OpenGL since they can take advantage of the capabilities of recent Graphics Processing 
Units (GPUs). 
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While many features and improvements were added into the fixed-function OpenGL pipeline, 
designs of GPUs were exposing more features than could be added into OpenGL.  To allow 
applications to gain access to these new GPU features, OpenGL version 2.0 officially added 
programmable shaders into the graphics pipeline.  This version of the pipeline allowed an application 
to create small programs, called shaders, that were responsible for implementing the features 
required by the application.  In the 2.0 version of the pipeline, two programmable stages were made 
available: 
•  vertex shading enabled the application full control over manipulation of the 3D geometry provided 

by the application 
•  fragment shading provided the application capabilities for shading pixels (the terms classically 

used for determining a pixel’s color). 
OpenGL 2.0 also fully supported OpenGL 1.X’s pipeline, allowing the application to use both version 
of the pipeline: fixed-function, and programmable.  
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Until OpenGL 3.0, features have only been added (but never removed) from OpenGL, providing a lot 
of application backwards compatibility (up to the use of extensions).  OpenGL version 3.0 introduced 
the mechanisms for removing features from OpenGL, called the deprecation model.  It defines how 
the OpenGL design committee (the OpenGL Architecture Review Board (ARB) of the Khronos 
Group) will advertise of which and how functionality is removed from OpenGL. 

You might ask: why remove features from OpenGL?  Over the 15 years to OpenGL 3.0, GPU 
features and capabilities expanded and some of the methods used in older versions of OpenGL 
were not as efficient as modern methods.  While removing them could break support for older 
applications, it also simplified and optimized the GPUs allowing better performance. 

Within an OpenGL application, OpenGL uses an opaque data structure called a context, which 
OpenGL uses to store shaders and other data.  Contexts come in two flavors: 
•  full contexts expose all the features of the current version of OpenGL, including features that are 

marked deprecated. 
•  forward-compatible contexts enable only the features that will be available in the next version of 

OpenGL (i.e., deprecated features pretend to be removed), which can help developers make sure 
their applications work with future version of OpenGL. 

Forward-compatible contexts are available in OpenGL versions from 3.1 onwards. 
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OpenGL version 3.1 was the first version to remove deprecated features, and break backwards 
compatibility with previous versions of OpenGL.  The features removed from included the old-style 
fixed-function pipeline, among other lesser features. 

One major refinement introduced in 3.1 was requiring all data to be placed in GPU-resident buffer 
objects, which help reduce the impacts of various computer system architecture limitations related to 
GPUs. 

While many features were removed from OpenGL 3.1, the OpenGL ARB realized that to make it 
easy for application developers to transition their products, they introduced an OpenGL extensions, 
GL_ARB_compatibility, that allowed access to the removed features. 
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Until OpenGL 3.2, the number of shader stages in the OpenGL pipeline remained the same, with 
only vertex and fragment shaders being supported.  OpenGL version 3.2 added a new shader stage 
called geometry shading which allows the modification (and generation) of geometry within the 
OpenGL pipeline.   
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In order to make it easier for developers to choose the set of features they want to use in their 
application, OpenGL 3.2 also introduced profiles which allow further selection of OpenGL contexts. 

The core profile is the modern, trimmed-down version of OpenGL that includes the latest features.  
You can request a core profile for a Full or Forward-compatible profile.  Conversely, you could 
request a compatible profile, which includes all functionality (supported by the OpenGL driver on 
your system) in all versions of OpenGL up to, and including, the version you’ve requested. 
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The OpenGL 4.X pipeline added another pair of shaders (which work in tandem, so we consider it a 
single stage) for supporting dynamic tessellation in the GPU.  Tessellation control and tessellation 
evaluation shaders were added to OpenGL version 4.0. 

The current version of OpenGL is 4.3, which includes some additional features over the 4.0 pipeline, 
but no new shading stages. 
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WebGL is becoming increasingly more important now that it is supported by most browsers, 
including Mozilla and Chrome. Besides the advantage of being able to run without recompilation 
across platforms, it can easily be integrated with other Web applications and make use of a variety of 
portable packages available over the Web. 
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To begin, let us introduce a simplified model of the OpenGL pipeline.  Generally speaking, data flows 
from your application through the GPU to generate an image in the frame buffer.  Your application 
will provide vertices, which are collections of data that are composed to form geometric objects, to 
the OpenGL pipeline.  The vertex processing stage uses a vertex shader to process each vertex, 
doing any computations necessary to determine where in the frame buffer each piece of geometry 
should go.  The other shading stages we mentioned – tessellation and geometry shading – are also 
used for vertex processing, but we’re trying to keep this simple. 

After all the vertices for a piece of geometry are processed, the rasterizer determines which pixels in 
the frame buffer are affected by the geometry, and for each pixel, the fragment processing stage is 
employed, where the fragment shader runs to determine the final color of the pixel. 

In your OpenGL applications, you’ll usually need to do the following tasks: 
•  specify the vertices for your geometry 
•  load vertex and fragment shaders (and other shaders, if you’re using them as well) 
•  issue your geometry to engage the OpenGL pipeline for processing 
Of course, OpenGL is capable of many other operations as well, many of which are outside of the 
scope of this introductory course.  We have included references at the end of the notes for your 
further research and development. 
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You’ll find that a few techniques for programming with modern OpenGL goes a long way.  In fact, 
most programs – in terms of OpenGL activity – are very repetitive.  Differences usually occur in how 
objects are rendered, and that’s mostly handled in your shaders. 
There four steps you’ll use for rendering a geometric object are as follows: 
1.  First, you’ll load and create OpenGL shader programs from shader source programs you create 
2.  Next, you will need to load the data for your objects into OpenGL’s memory.  You do this by 

creating buffer objects and loading data into them. 
3.  Continuing, OpenGL needs to be told how to interpret the data in your buffer objects and 

associate that data with variables that you’ll use in your shaders.  We call this shader plumbing. 
4.  Finally, with your data initialized and shaders set up, you’ll render your objects 

We’ll expand on those steps more through the course, but you’ll find that most applications will 
merely iterate through those steps. 
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While OpenGL will take care of filling the pixels in your application’s output window or image, it has 
no mechanisms for creating that rendering surface.  Instead, OpenGL relies on the native windowing 
system of your operating system to create a window, and make it available for OpenGL to render 
into.  For each windowing system (like Microsoft Windows, or the X Window System on Linux [and 
other Unixes]), there’s a binding library that lets mediates between OpenGL and the native 
windowing system.   
Since each windowing system has different semantics for creating windows and binding OpenGL to 
them, discussing each one is outside of the scope of this course.  Instead, we use an open-source 
library named freeglut that abstracts each windowing system’s specifics into a simple library.  
freeglut is a derivative of an older implementation called GLUT, and we’ll use those names 
interchangeably.  GLUT will help us in creating windows, dealing with user input and input devices, 
and other window-system activities. 

You can find out more about freeglut at its website: http://freeglut.sourceforge.net	  

Both	  GLUT	  and	  freeglut	  use	  deprecated	  functions	  and	  should	  not	  work	  with	  a	  core	  
profile.	  One	  alternative	  is	  GLFW	  which	  runs	  on	  Windows,	  Linux	  and	  Mac	  OS	  X.	  
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Just like window systems, operating systems have different ways of working with libraries.  In some 
cases, the library you link your application exposes different functions than the library you execute 
your program with.  Microsoft Windows is a notable example where you compile your application 
with a	  .lib library, but use a .dll at runtime for finding function definitions. As such, your 
application would generally need to use operating-system specific methods to access functions.  In 
general, this is troublesome and a lot of work.  Fortunately, another open-source library comes to our 
aid, GLEW, the OpenGL Extension Wrangler library.  It removes all the complexity of accessing 
OpenGL functions, and working with OpenGL extensions.  We use GLEW in our examples to simplify 
the code.  You can find details about GLEW at its website: http://glew.sourceforge.net	  
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In OpenGL, as in other graphics libraries, objects in the scene are composed of geometric primitives, 
which themselves are described by vertices.  A vertex in modern OpenGL is a collection of data 
values associated with a location in space.  Those data values might include colors, reflection 
information for lighting, or additional coordinates for use in texture mapping. Locations can be 
specified on 2, 3 or 4 dimensions but are stored in 4 dimensional homogeneous coordinates. 

Vertices must be organized in OpenGL server-side objects called vertex buffer objects (also known 
asVBOs), which need to contain all of the vertex information for all of the primitives that you want to 
draw at one time.  VBOs can store vertex information in almost any format (i.e., an array-of-
structures (AoS) each containing a single vertex’s information, or a structure-of-arrays (SoA) where 
all of the same “type” of data for a vertex is stored in a contiguous array, and the structure stores 
arrays for each attribute that a vertex can have).  The data within a VBO needs to be contiguous in 
memory, but doesn’t need to be tightly packed (i.e., data elements may be separated by any number 
of bytes, as long as the number of bytes between attributes is consistent). 

VBOs are further required to be stored in vertex array objects (known as VAOs).  Since it may be the 
case that numerous VBOs are associated with a single object, VAOs simplify the management of the 
collection of VBOs. 
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To form 3D geometric objects, you need to decompose them into geometric primitives that OpenGL 
can draw.  OpenGL only knows how to draw three things: points, lines, and triangles, but can use 
collections of the same type of primitive to optimize rendering. 

OpenGL	  Primi,ve	   Descrip,on	   Total	  Ver,ces	  for	  n	  Primi,ves	  

GL_POINTS	  
Render	  a	  single	  point	  per	  vertex	  
(points	  may	  be	  larger	  than	  a	  single	  
pixel)	  

n	  

GL_LINES	  
Connect	  each	  pair	  of	  ver:ces	  with	  a	  
single	  line	  segment.	  

2n	  

GL_LINE_STRIP	  
Connect	  each	  successive	  vertex	  to	  the	  
previous	  one	  with	  a	  line	  segment.	  

n+1	  

GL_LINE_LOOP	  
Connect	  all	  ver:ces	  in	  a	  loop	  of	  line	  
segments.	  

n	  

GL_TRIANGLES	  
Render	  a	  triangle	  for	  each	  triple	  of	  
ver:ces.	  

3n	  

GL_TRIANGLE_STRIP	  

Render	  a	  triangle	  from	  the	  first	  three	  
ver:ces	  in	  the	  list,	  and	  then	  create	  a	  
new	  triangle	  with	  the	  last	  two	  
rendered	  ver:ces,	  and	  the	  new	  vertex.	  

n+2	  

GL_TRIANGLE_FAN	  
Create	  triangles	  by	  using	  the	  first	  
vertex	  in	  the	  list,	  and	  pairs	  of	  
successive	  ver:ces.	  

n+2	  
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The next few slides will introduce our first example program, one which simply displays a cube with 
different colors at each vertex.  We aim for simplicity in this example, focusing on the OpenGL 
techniques, and not on optimal performance. 
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In order to simplify our application development, we define a few types and constants to make our 
code more readable and organized. 

Our cube, like any other cube, has six square faces, each of which we’ll draw as two triangles.  In 
order to sizes memory arrays to hold the necessary vertex data, we define the constant 
NumVertices.	  

Addi:onally,	  as	  we’ll	  see	  in	  our	  first	  shader,	  the	  OpenGL	  shading	  language,	  GLSL,	  has	  a	  built-‐in	  type	  called	  
vec4,	  which	  represents	  a	  vector	  of	  four	  floa:ng-‐point	  values.	  	  We	  define	  a	  C++	  class	  for	  our	  applica:on	  that	  
has	  the	  same	  seman:cs	  as	  that	  GLSL	  type.	  	  Addi:onally,	  to	  logically	  associate	  a	  type	  for	  our	  data	  with	  what	  
we	  intend	  to	  do	  with	  it,	  we	  leverage	  C++	  	  typedefs	  to	  create	  aliases	  for	  colors	  and	  posi:ons.	  
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In order to provide data for OpenGL to use, we need to stage it so that we can load it into the VBOs 
that our application will use.  In your applications, you might load these data from a file, or generate 
them on the fly.  For each vertex, we want to use two bits of data – vertex attributes in OpenGL 
speak – to help process each vertex to draw the cube.  In our case, each vertex has a position in 
space, and an associated color.  To store those values for later use in our VBOs, we create two 
arrays to hold the per vertex data. Note that we can organize our data in other ways such as with a 
single array with interleaved positions and colors. 
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In our example we’ll copy the coordinates of our cube model into a VBO for OpenGL to use.  Here 
we set up an array of eight coordinates for the corners of a unit cube centered at the origin. 

You may be asking yourself: “Why do we have four coordinates for 3D data?”  The answer is that in 
computer graphics, it’s often useful to include a fourth coordinate to represent three-dimensional 
coordinates, as it allows numerous mathematical techniques that are common operations in graphics 
to be done in the same way.  In fact, this four-dimensional coordinate has a proper name, a 
homogenous coordinate. We could also use a point3 type, i.e. 

point2(-0.5, -0.5, 0.5)  

which will be stored in 4 dimensions on the GPU. 
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Just like our positional data, we’ll set up a matching set of colors for each of the model’s vertices, 
which we’ll later copy into our VBO.  Here we set up eight RGBA colors.  In OpenGL, colors are 
processed in the pipeline as floating-point values in the range [0.0, 1.0].  Your input data can take 
any for; for example, image data from a digital photograph usually has values between [0, 255].  
OpenGL will (if you request it), automatically convert those values into [0.0, 1.0], a process called 
normalizing values. 
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As our cube is constructed from square cube faces, we create a small function, quad(), which takes 
the indices into the original vertex color and position arrays, and copies the data into the VBO 
staging arrays.  If you were to use this method (and we’ll see better ways in a moment), you would 
need to remember to reset the Index value between setting up your VBO arrays. 
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Here we complete the generation of our cube’s VBO data by specifying the six faces using index 
values into our original vertex_positions and vertex_colors arrays.  It’s worth noting that the 
order that we choose our vertex indices is important, as it will affect something called backface 
culling later. 

We’ll see later that instead of creating the cube by copying lots of data, we can use our original 
vertex data along with just the indices we passed into quad() here to accomplish the same effect.  
That technique is very common, and something you’ll use a lot.  We chose this to introduce the 
technique in this manner to simplify the OpenGL concepts for loading VBO data. 
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Similarly to VBOs, vertex array objects (VAOs) encapsulate all of the VBO data for an object.  This 
allows much easier switching of data when rendering multiple objects (provided the data’s been set 
up in multiple VAOs). 

The process for initializing a VAO is similar to that of a VBO, except a little less involved. 
1.  First, generate a name VAO name by calling glGenVertexArrays()	  
2.  Next,	  make	  the	  VAO	  “current”	  by	  calling	  glBindVertexArray().	  	  Similar	  to	  what	  was	  described	  for	  

VBOs,	  you’ll	  call	  this	  every	  :me	  you	  want	  to	  use	  or	  update	  the	  VBOs	  contained	  within	  this	  VAO.	  
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The above sequence calls shows how to create and bind a VAO.  Since all geometric data in 
OpenGL must be stored in VAOs, you’ll use this code idiom often. 
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While we’ve talked a lot about VBOs, we haven’t detailed how one goes about creating them.  Vertex 
buffer objects, like all (memory) objects in OpenGL (as compared to geometric objects) are created 
in the same way, using the same set of functions.  In fact, you’ll see that the pattern of calls we make 
here are similar to other sequences of calls for doing other OpenGL operations. 
In the case of vertex buffer objects, you’ll do the following sequence of function calls: 
1.  Generate a buffer’s name by calling glGenBuffers()	  
2.  Next, you’ll make that buffer the “current” buffer, which means it’s the selected buffer for reading 

or writing data values by calling glBindBuffer(),	  with	  a	  type	  of	  GL_ARRAY_BUFFER.	  	  There	  are	  
different	  types	  of	  buffer	  objects,	  with	  an	  array	  buffer	  being	  the	  one	  used	  for	  storing	  geometric	  data.	  

3.  To initialize a buffer, you’ll call glBufferData(), which will copy data from your application into 
the GPU’s memory.  You would do the same operation if you also wanted to update data in the 
buffer 

4.  Finally, when it comes time to render using the data in the buffer, you’ll once again call 
glBindVertexArray() to make it and its VBOs current again.  In fact, if you have multiple 
objects, each with their own VAO, you’ll likely call glBindVertexArray() once per frame for 
each object. 
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The above sequence of calls illustrates generating, binding, and initializing a VBO with data.  In this 
example, we use a technique permitting data to be loaded into two steps, which we need as our data 
values are in two separate arrays.  It’s noteworthy to look at the glBufferData() call; in this call, we 
basically have OpenGL allocate an array sized to our needs (the combined size of our point and 
color arrays), but don’t transfer any data with the call, which is specified with the NULL value.  This is 
akin to calling malloc()	  to create a buffer of uninitialized data.  We later load that array with our 
calls to glBufferSubData(), which allows us to replace a subsection of our array.  This technique is 
also useful if you need to update data inside of a VBO at some point in the execution of your 
application. 

32 



33 

The final step in preparing you data for processing by OpenGL (i.e., sending it down for rendering) is 
to specify which vertex attributes you’d like issued to the graphics pipeline.  While this might seem 
superfluous, it allows you to specify multiple collections of data, and choose which ones you’d like to 
use at any given time. 
Each of the attributes that we enable must be associated with an “in” variable of the currently bound 
vertex shader.  You retrieve vertex attribute locations was retrieved from the compiled shader by 
calling glGetAttribLocation().	  	  We discuss this call in the shader section. 



To complete the “plumbing” of associating our vertex data with variables in our shader programs, you 
need to tell OpenGL where in our buffer object to find the vertex data, and which shader variable to 
pass the data to when we draw. The above code snippet shows that process for our two data 
sources.  In our shaders (which we’ll discuss in a moment), we have two variables: vPosition, and 
vColor, which we will associate with the data values in our VBOs that we copied form our 
vertex_positions and vertex_colors arrays. 

The calls to glGetAttribLocation() will return a compiler-generated index which we need to use 
to complete the connection from our data to the shader inputs.  We also need to “turn the valve” on 
our data by enabling its attribute array by calling glEnableVertexAttribArray() with the selected 
attribute location. 
This is the most flexible approach to this process, but depending on your OpenGL version, you may 
be able to use the layout construct, which allows you to specify the attribute location, as compared 
to having to retrieve it after compiling and linking your shaders.  We’ll discuss that in our shader 
section later in the course. 

BUFFER_OFFSET is a simple macro defined to make the code more readable 

#define BUFFER_OFFSET( offset )   ((GLvoid*) (offset)) 
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In order to initiate the rendering of primitives, you need to issue a drawing routine.  While there are 
many routines for this in OpenGL, we’ll discuss the most fundamental ones.  The simplest routine is 
glDrawArrays(), to which you specify what type of graphics primitive you want to draw (e.g., here 
we’re rending a triangle strip), which vertex in the enabled vertex attribute arrays to start with, and 
how many vertices to send. 

This is the simplest way of rendering geometry in OpenGL Version 3.1.  You merely need to store 
you vertex data in sequence, and then glDrawArrays() takes care of the rest.  However, in some 
cases, this won’t be the most memory efficient method of doing things.  Many geometric objects 
share vertices between geometric primitives, and with this method, you need to replicate the data 
once for each vertex.  We’ll see a more flexible, in terms of memory storage and access in the next 
slides. 
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As with any programming language, GLSL has types for variables.  However, it includes vector-, and 
matrix-based types to simplify the operations that occur often in computer graphics. 

In addition to numerical types, other types like texture samplers are used to enable other OpenGL 
operations.  We’ll discuss texture samplers in the texture mapping section. 



The vector and matrix classes of GLSL are first-class types, with arithmetic and logical operations 
well defined.  This helps simplify your code, and prevent errors. 

Note in the above example, overloading ensures that both a*m and m*a are defined although they 
will not in general produce the same result. 
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For GLSL’s vector types, you’ll find that often you may also want to access components within the 
vector, as well as operate on all of the vector’s components at the same time.  To support that, 
vectors and matrices (which are really a vector of vectors), support normal “C” vector accessing 
using the square-bracket notation (e.g., “[i]”), with zero-based indexing.  Additionally, vectors (but not 
matrices) support swizzling, which provides a very powerful method for accessing and manipulating 
vector components. 
Swizzles allow components within a vector to be accessed by name.  For example, the first element 
in a vector – element 0 – can also be referenced by the names “x”, “s”, and “r”.  Why all the names – 
to clarify their usage.  If you’re working with a color, for example, it may be clearer in the code to use 
“r” to represent the red channel, as compared to “x”, which make more sense as the x-positional 
coordinate 

39 



In addition to types, GLSL has numerous qualifiers to describe a variable usage.  The most common 
of those are: 
•  in qualifiers that indicate the shader variable will receive data flowing into the shader, either from 

the application, or the previous shader stage. 
•  out qualifier which tag a variable as data output where data will flow to the next shader stage, or 

to the framebuffer 
•  uniform qualifiers for accessing data that doesn’t change across a draw operation 
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Like the “C” language, GLSL supports all of the logical flow control statements you’re used to. 
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GLSL also provides a rich library of functions supporting common operations.  While pretty much 
every vector- and matrix-related function available you can think of, along with the most common 
mathematical functions are built into GLSL, there’s no support for operations like reading files or 
printing values.  Shaders are really data-flow engines with data coming in, being processed, and 
sent on for further processing.   
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Fundamental to shader processing are a couple of built-in GLSL variable which are the terminus for 
operations.  In particular, vertex data, which can be processed by up to for shader stages in 
OpenGL are all ended by setting a positional value into the built-in variable, gl_Position.  Similarly, 
the output of a fragment shader (in version 3.1 of OpenGL) is set by writing values into the built-in 
variable gl_FragColor.  Later versions of OpenGL allow fragment shaders to output to other 
variables of the user’s designation as well. 
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Here’s the simple vertex shader we use in our cube rendering example.  It accepts two vertex 
attributes as input: the vertex’s position and color, and does very little processing on them; in fact, it 
merely copies the input into some output variables (with gl_Position being implicitly declared).  
The results of each vertex shader execution are passed further down the OpenGL pipeline, and 
ultimately end their processing in the fragment shader. 
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Here’s the associated fragment shader that we use in our cube example.  While this shader is as 
simple as they come – merely setting the fragment’s color to the input color passed in, there’s been a 
lot of processing to this point.  In particular, every fragment that’s shaded was generated by the 
rasterizer, which is a built-in, non-programmable (i.e., you don’t write a shader to control its 
operation).  What’s magical about this process is that if the colors across the geometric primitive (for 
multi-vertex primitives: lines and triangles) is not the same, the rasterizer will interpolate those colors 
across the primitive, passing each iterated value into our color variable. 



Shaders need to be compiled in order to be used in your program. As compared to C programs, the 
compiler and linker are implemented in the OpenGL driver, and accessible through function calls 
from within your program. The diagram illustrates the steps required to compile and link each type of 
shader into your shader program. A program can contain either a vertex shader (which replaces the 
fixed-function vertex processing), a fragment shader (which replaces the fragment coloring stages), 
or both. If a shader isn’t present for a particular stage, the fixed-function part of the pipeline is used 
in its place. 

Just a with regular programs, a syntax error from the compilation stage, or a missing symbol from 
the linker stage could prevent the successful generation of an executable program. There are 
routines for verifying the results of the compilation and link stages of the compilation process, but are 
not shown here. Instead, we’ve provided a routine that makes this process much simpler, as 
demonstrated on the next slide. 
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To simplify our lives, we created a routine that simplifies loading, compiling, and linking shaders: 
InitShaders().  It implements the shader compilation and linking process shown on the previous 
slide. It also does full error checking, and will terminate your program if there’s an error at some 
stage in the process (production applications might choose a less terminal solution to the problem, 
but it’s useful in the classroom). 

InitShaders() accepts two parameters, each a filename to be loaded as source for the vertex and 
fragment shader stages, respectively. 
The value returned from InitShaders() will be a valid GLSL program id that you can pass into 
glUseProgram(). 
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OpenGL shaders, depending on which stage their associated with, process different types of data.  
Some data for a shader changes for each shader invocation.  For example, each time a vertex 
shader executes, it’s presented with new data for a single vertex; likewise for fragment, and the other 
shader stages in the pipeline.  The number of executions of a particular shader rely on how much 
data was associated with the draw call that started the pipeline – if you call glDrawArrays() 
specifiying 100 vertices, your vertex shader will be called 100 times, each time with a different 
vertex. 

Other data that a shader may use in processing may be constant across a draw call, or even all the 
drawing calls for a frame.  GLSL calls those uniform varialbes, since their value is uniform across the 
execution of all shaders for a single draw call. 

Each of the shader’s input data variables (ins and uniforms) needs to be connected to a data source 
in the application.  We’ve already seen glGetAttribLocation() for retrieving information for connecting 
vertex data in a VBO to shader variable.  You will also use the same process for uniform variables, 
as we’ll describe shortly. 
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Once you know the names of variables in a shader – whether they’re attributes or uniforms – you 
can determine their location using one of the glGet*Location() calls. 
If you don’t know the variables in a shader (if, for instance, you’re writing a library that accepts 
shaders), you can find out all of the shader variables by using the glGetActiveAttrib() function. 
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You’ve already seen how one associates values with attributes by calling glVertexAttribPointer().  To 
specify a uniform’s value, we use one of the glUniform*() functions.  For setting a vector type, you’ll 
use one of the glUniform*() variants, and for matrices you’ll use a glUniformMatrix *() form. 



You’ll find that many OpenGL programs look very similar, particularly simple examples as we’re 
showing in class.  Above we demonstrate the basic initialization code for our examples.  In our 
main() routine, you can see our use of the freeglut and GLEW libraries. 

The main() has a number of tasks: 
•  Initialize and open a window 
• Initialize the buffers and parameters by calling init() 
• Specify the callback functions for events 
• Enter an infinite event loop 

Although callbacks aren’t required by OpenGL, it is the standard method for developing interactive 
applications. 
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A display callback is required by freeglut. It is invoked whenever OpenGL determines a window has 
to be redrawn, i.e. when a window is first opened or the contents of a window are changed. In our 
example we use a keyboard callback to end the program. 
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We begin delving into shader specifics by first taking a look at vertex shaders.  As you’ve probably 
arrived at, vertex shaders are used to process vertices, and have the required responsibility of 
specifying the vertex’s position in clip coordinates.  This process usually involves numerous vertex 
transformations, which we’ll discuss next.  Additionally, a vertex shader may be responsible for 
determine additional information about a vertex for use by the rasterizer, including specifying colors. 
To begin our discussion of vertex transformations, we’ll first describe the synthetic camera model. 
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This model has become know as the synthetic camera model. 
Note that both the objects to be viewed and the camera are three-dimensional while the 
resulting image is two dimensional. 
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The processing required for converting a vertex from 3D or 4D space into a 2D window coordinate is 
done by the transform stage of the graphics pipeline.  The operations in that stage are illustrated 
above.  The purple boxes represent a matrix multiplication operation.  In graphics, all of our matrices 
are 4×4 matrices (they’re homogenous, hence the reason for homogenous coordinates). 

When we want to draw an geometric object, like a chair for instance, we first determine all of the 
vertices that we want to associate with the chair.  Next, we determine how those vertices should be 
grouped to form geometric primitives, and the order we’re going to send them to the graphics 
subsystem.  This process is called modeling.  Quite often, we’ll model an object in its own little 3D 
coordinate system.  When we want to add that object into the scene we’re developing, we need to 
determine its world coordinates.  We do this by specifying a modeling transformation, which tells the 
system how to move from one coordinate system to another.  

Modeling transformations, in combination with viewing transforms, which dictate where the viewing 
frustum is in world coordinates, are the first transformation that a vertex goes through.  Next, the 
projection transform is applied which maps the vertex into another space called clip coordinates, 
which is where clipping occurs.  After clipping, we divide by the w value of the vertex, which is 
modified by projection.  This division operation is what allows the farther-objects-being-smaller 
activity.  The transformed, clipped coordinates are then mapped into the window. 
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Note that human vision and a camera lens have cone-shaped viewing volumes. OpenGL 
(and almost all computer graphics APIs) describe a pyramid-shaped viewing volume. 
Therefore, the computer will “see” differently from the natural viewpoints, especially along 
the edges of viewing volumes. This is particularly pronounced for wide-angle “fish-eye” 
camera lenses. 
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By using 4×4 matrices, OpenGL can represent all geometric transformations using one 
matrix format.  Perspective projections and translations require the 4th row and column.  
Otherwise, these operations would require an vector-addition operation, in addition to the 
matrix multiplication. 

While OpenGL specifies matrices in column-major order, this is often confusing for “C” 
programmers who are used to row-major ordering for two-dimensional arrays.  OpenGL 
provides routines for loading both column- and row-major matrices.  However, for standard 
OpenGL transformations, there are functions that automatically generate the matrices for 
you, so you don’t generally need to be concerned about this until you start doing more 
advanced operations. 
For operations other than perspective projection, the fourth row is always (0, 0, 0, 1) which 
leaves the w-coordinate unchanged.. 
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Another essential part of the graphics processing is setting up how much of the world we can see.  
We construct a viewing frustum, which defines the chunk of 3-space that we can see.  There are two 
types of views: a perspective view, which you’re familiar with as it’s how your eye works, is used to 
generate frames that match your view of reality–things farther from your appear smaller.  This is the 
type of view used for video games, simulations, and most graphics applications in general. 
The other view, orthographic, is used principally for engineering and design situations, where relative 
lengths and angles need to be preserved. 
For a perspective, we locate the eye at the apex of the frustum pyramid.  We can see any objects 
which are between the two planes perpendicular to eye (they’re called the near and far clipping 
planes, respectively).  Any vertices between near and far, and inside the four planes that connect 
them will be rendered.  Otherwise, those vertices are clipped out and discarded.  In some cases a 
primitive will be entirely outside of the view, and the system will discard it for that frame.  Other 
primitives might intersect the frustum, which we clip such that the part of them that’s outside is 
discarded and we create new vertices for the modified primitive. 
While the system can easily determine which primitive are inside the frustum, it’s wasteful of system 
bandwidth to have lots of primitives discarded in this manner.  We utilize a technique named culling 
to determine exactly which primitives need to be sent to the graphics processor, and send only those 
primitives to maximize its efficiency. 
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In OpenGL, the default viewing frusta are always configured in the same manner, which defines the 
orientation of our clip coordinates.  Specifically, clip coordinates are defined with the “eye” located at 
the origin, looking down the –z axis.  From there, we define two distances: our near and far clip 
distances, which specify the location of our near and far clipping planes.  The viewing volume is then 
completely by specifying the positions of the enclosing planes that are parallel to the view direction . 
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LookAt() generates a viewing matrix based on several points. LookAt() provides 
natrual semantics for modeling flight application, but care must be taken to avoid 
degenerate numerical situations, where the generated viewing matrix is undefined. 
An alternative is to specify a sequence of rotations and translations that are concatenated 
with an initial identity matrix. 
Note: that the name modelview matrix is appropriate since moving objects in the model front 
of the camera is equivalent to moving the camera to view a set of objects. 
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Here we show the construction of a translation matrix.  Translations really move coordinate systems, 
and not individual objects.   
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Here we show the construction of a scale matrix, which is used to change the shape of space, but 
not move it (or more precisely, the origin).  The above illustration has a translation to show how 
space was modified, but a simple scale matrix will not include such a translation. 
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Here we show the effects of a rotation matrix on space.  Once again, a translation has been applied 
in the image to make it easier to see the rotation’s affect. 



Here’s an example vertex shader for rotating our cube.  We generate the matrices in the shader (as 
compared to in the application), based on the input angle theta.  It’s useful to note that we can 
vectorize numerous computations.  For example, we can generate a vectors of sines and cosines for 
the input angle, which we’ll use in further computations. 
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Completing our shader, we compose two of three rotation matrices (one around each axis). In 
generating our matrices, we use one of the many matrix constructor functions (in this case, 
specifying the 16 individual elements).  It’s important to note in this case, that our matrices are 
column-major, so we need to take care in the placement of the values in the constructor.  
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We complete our shader here by generating the last rotation matrix, and ) and then use the 
composition of those matrices to transform the input vertex position.   We also pass-thru the color 
values by assigning the input color to an output variable. 

67 



Finally, we merely need to supply the angle values into our shader through our uniform plumbing.  In 
this case, we track each of the axes rotation angle, and store them in a vec3 that matches the angle 
declaration in the shader.  We also keep track of the uniform’s location so we can easily update its 
value. 
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Lighting is an important technique in computer graphics. Without lighting, objects tend to 
look like they are made out of plastic. 
OpenGL divides lighting into three parts: material properties, light properties and global 
lighting parameters. 
Lighting is available in both RGBA mode and color index mode. RGBA is more flexible and 
less restrictive than color index mode lighting. 



OpenGL can use the shade at one vertex to shade an entire polygon (constant shading) or 
interpolate the shades at the vertices across the polygon (smooth shading), the default.  

The original lighting model that was supported in hardware and OpenGL was due to Phong and later 
modified by Blinn. Although the lighting functions have been deprecated, the model can easily be 
implemented in shaders and forms the basis for other models. 



The orientation of a surface is specified by the normal at each point. For a flat polygon the normal is 
constant over the polygon. Because normals are specified by the application program and can be 
changed between the specification of vertices, when we shade a polygon it can appear to be curved. 



OpenGL lighting is based on the Phong lighting model. At each vertex in the primitive, a 
color is computed using that primitives material properties along with the light settings. 
The color for the vertex is computed by adding four computed colors for the final vertex 
color. The four contributors to the vertex color are: 

•  Ambient is color of the object from all the undirected light in a scene. 
•  Diffuse is the base color of the object under current lighting. There must be a light 
shining on the object to get a diffuse contribution. 
•  Specular is the contribution of the shiny highlights on the object. 
•  Emission is the contribution added in if the object emits light (i.e., glows) 



The lighting normal tells OpenGL how the object reflects light around a vertex. If you 
imagine that there is a small mirror at the vertex, the lighting normal describes how the 
mirror is oriented, and consequently how light is reflected. 



Material properties describe the color and surface properties of a material (dull, shiny, etc).  
The properties described above are components of the Phong lighting model, a simple 
model that yields reasonable results with little computation.  Each of the material 
components would be passed into a vertex shader, for example, to be used in the lighting 
computation along with the vertex’s position and lighting normal. 



Here we declare numerous variables that we’ll use in computing a color using a simple lighting 
model.  All of the uniform values are passed in from the application and describe the material and 
light properties being rendered. 
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In the initial parts of our shader, we generate numerous vector quantities to be used in our lighting 
computation. 
•  pos represents the vertex’s position in eye coordinates 
•  L represents the vector from the vertex to the light 
•  E represents the “eye” vector, which is the vector from the vertex’s eye-space position to the origin 
•  H is the “half vector” which is the normalized vector half-way between the light and eye vectors 
•  N is the transformed vertex normal 
Note that all of these quantities are vec3’s, since we’re dealing with vectors, as compared to 
homogenous coordinates.  When we need to convert form a homogenous coordinate to a vector, we 
use a vector swizzle to extract the components we need. 
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Here we complete our lighting computation.  The Phong model, which this shader is based on, uses 
various material properties as we described before.  Likewise, each light can contribute to those 
same properties.  The combination of the material and light properties are represented as our 
“product” variables in this shader.  The products are merely the component-wise products of the light 
and objects same material propreties.  These values are computed in the application and passed 
into the shader. 
In the Phong model, each material product is attenuated by the magnitude of the various vector 
products.  Starting with the most influential component of lighting, the diffuse color, we use the dot 
product of the lighting normal and light vector, clamping the value if the dot product is negative 
(which physically means the light’s behind the object).  We continue by computing the specular 
component, which is computed as the dot product of the normal and the half-vector raised to the 
shininess value.  Finally, if the light is behind the object, we correct the specular contribution. 
Finally, we compose the final vertex color as the sum of the computed ambient, diffuse, and specular 
colors, and update the transformed vertex position. 
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The final shading stage that OpenGL supports is fragment shading which allows an application per-
pixel-location control over the color that may be written to that location.  Fragments, which are on 
their way to the framebuffer, but still need to do some pass some additional processing to become 
pixels.  However, the computational power available in shading fragments is a great asset to 
generating images.  In a fragment shader, you can compute lighting values – similar to what we just 
discussed in vertex shading – per fragment, which gives much better results, or add bump mapping, 
which provides the illusion of greater surface detail.  Likewise, we’ll apply texture maps, which allow 
us to increase the detail for our models without increasing the geometric complexity. 
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As an example of what we can do in a fragment shader, consider using our lighting model, but for 
every pixel, as compared to at the vertex level.  Doing fragment lighting  provides much better visual 
result, but using almost identical shader code (except you need to move it from your vertex shader 
into your fragment shader).  The only trick required is that we need to have the rasterizer provide us 
updated normal values for each fragment.  However, that’s just like iterating a color, so there’s 
almost nothing to it. 
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We’ll now analyze a few case studies from different applications. 
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The first simple application we’ll look at is rendering height fields, as you might do when rendering 
terrain in an outdoor game or flight simulator. 
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We’d first like to render a wire-frame version of our mesh, which we’ll draw a individual line loops. 
To begin, we build our data set by sampling the function f for a particular time across the domain of 
points.  From there, we build our array of points to render.  Once we have our data and have loaded 
into our VBOs we render it by drawing the individual wireframe quadrilaterals. 
There are many ways to render a wireframe surface like this – give some thought of other methods. 
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Here’s a rendering of the mesh we just generated. 
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While the wireframe version is of some interest, we can create better looking meshes by adding a 
few more effects.  We’ll begin by creating a solid mesh by converting each wireframe quadrilateral 
into a solid quad composed of two separate triangles.  Turns out with our pervious set of points, we 
can merely changed our glDrawArrays()	  call – or more specifically, the geometric primitive type – 
to render a solid surface. 
However, if we don’t do some additional modification of one of our shaders, we’ll get a large back 
blob.  To produce a more useful rendering, we’ll add lighting computations into our vertex shader, 
computing a lighting color for each vertex, which will be passed to the fragment shader. 
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Details of lighting model are not important to here. The model includes the standard modified Phong 
diffuse and specular terms without distance. 
Note that we do the lighting in eye coordinates and therefore must compute the eye position in this 
frame. 
All the light and material properties are set in the application and are available through the OpenGL 
state. 
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Here’s a rendering of our shaded, solid mesh. 
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Textures are images that can be thought of as continuous and be one, two, three, or four 
dimensional. By convention, the coordinates of the image are s, t, r and q. Thus for the two 
dimensional image above, a point in the image is given by its (s, t) values with (0, 0) in the 
lower-left corner and (1, 1) in the top-right corner. 
A texture map for a two-dimensional geometric object in (x, y, z) world coordinates maps a 
point in (s, t) space to a corresponding point on the screen. 



The advantage of texture mapping is that visual detail is in the image, not in the geometry. 
Thus, the complexity of an image does not affect the geometric pipeline (transformations, 
clipping) in OpenGL. Texture is added during rasterization where the geometric and pixel 
pipelines meet. 



In the simplest approach, we must perform these three steps. 
Textures reside in texture memory. When we assign an image to a texture it is copied from 
processor memory to texture memory where pixels are formatted differently.  
Texture coordinates are actually part of the state as are other vertex attributes such as color 
and normals. As with colors, OpenGL interpolates texture inside geometric objects. 
Because textures are really discrete and of limited extent, texture mapping is subject to 
aliasing errors that can be controlled through filtering. 
Texture memory is a limited resource and having only  a single active texture can lead to 
inefficient code. 



The general steps to enable texturing are listed above.  Some steps are optional, and due to 
the number of combinations, complete coverage of the topic is outside the scope of this 
course. 

Here we use the texture object approach.  Using texture objects may enable your OpenGL 
implementation to make some optimizations behind the scenes. 

As with any other OpenGL state, texture mapping requires that glEnable() be called.  
The tokens for texturing are: 

 GL_TEXTURE_1D - one dimensional texturing 
 GL_TEXTURE_2D - two dimensional texturing 
 GL_TEXTURE_3D - three dimensional texturing 

2D texturing is the most commonly used.  1D texturing is useful for applying contours to 
objects ( like altitude contours to mountains ).  3D texturing is useful for volume rendering. 



The first step in creating texture objects is to have OpenGL reserve some indices for your 
objects.  glGenTextures() will request n texture ids and return those values back to you 
in texIds. 
To begin defining a texture object, you call glBindTexture() with the id of the object you 
want to create.  The target is one of GL_TEXTURE_{123}D().  All texturing calls become 
part of the object until the next glBindTexture() is called. 
To have OpenGL use a particular texture object, call glBindTexture() with the target and 
id of the object you want to be active. 
To delete texture objects, use glDeleteTextures( n, *texIds ), where texIds is 
an array of texture object identifiers to be deleted.  



After creating a texture object, you’ll need to bind to it to initialize or use the texture stored in 
the object.  This operation is very similar to what you’ve seen when working with VAOs and 
VBOs. 



Specifying the texels for a texture is done using the glTexImage{123}D() call.  This will 
transfer the texels in CPU memory to OpenGL, where they will be processed and converted 
into an internal format. 
The level parameter is used for defining how OpenGL should use this image when mapping 
texels to pixels.  Generally, you’ll set the level to 0, unless you are using a texturing 
technique called mipmapping, which we will discuss in the next section.    



When you want to map a texture onto a geometric primitive, you need to provide texture 
coordinates. Valid texture coordinates are between 0 and 1, for each texture dimension,  
and usually manifest in shaders as vertex attributes.  We’ll see how to deal with texture 
coordinates outside the range [0, 1] in a moment. 



Just like vertex attributes were associated with data in the application, so too with textures.  In 
particular, you access a texture defined in your application using a texture sampler in your shader.  
The type of the sampler needs to match the type of the associated texture.  For example, you would 
use a sampler2D to work with a two-dimensional texture created with 
glTexImage2D( GL_TEXTURE_2D, … ); 

Within the shader, you use the texture() function to retrieve data values from the texture associated 
with your sampler.  To the texture() function, you pass the sampler as well as the texture coordinates 
where you want to pull the data from. 

Note: the overloaded texture() method was added into GLSL version 3.30.  Prior to that release, 
there were special texture functions for each type of texture sampler (e.g., there was a texture2D() 
call for use with the sampler2D). 
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Similar to our first cube example, if we want to texture our cube, we need to provide texture 
coordinates for use in our shaders.  Following our previous example, we merely add an additional 
vertex attribute that contains our texture coordinates.  We do this for each of our vertices.  We will 
also need to update VBOs and shaders to take this new attribute into account. 
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The code snippet above demonstrates procedurally generating a two 64 × 64 texture maps. 
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The above OpenGL commands completely specify a texture object.  The code creates a texture id by 
calling glGenTextures().  It then binds the texture using glBindTexture() to open the object for use, 
and loading in the texture by calling glTexImage2D().  After that, numerous sampler characteristics 
are set, including the texture wrap modes, and texel filtering. 
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In order to apply textures to our geometry, we need to modify both the vertex shader and the pixel 
shader.  Above, we add some simple logic to pass-thru the texture coordinates from an attribute into 
data for the rasterizer. 
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Continuing to update our shaders, we add some simple code to modify our fragment shader to 
include sampling a texture.  How the texture is sampled (e.g., coordinate wrap modes, texel filtering, 
etc.) is configured in the application using the glTexParameter*() call. 
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All the above books except Angel and Shreiner, Interactive Computer Graphics (Addison-Wesley), 
are in the Addison-Wesley Professional series of OpenGL books. Books on WebGL are just starting 
to appear. 
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Many example programs, a C++ matrix-vector package and the InitShader function are under the 
Book Support tab at www.cs.unm.edu/~angel 
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